
)TIC FILE COPY Copy @12 coples

CD

I.) IDA PAPER P-2109

N

Ada LEXICAL ANALYZER GENERATOR
IUSER'S GUIDE

Reginald N. Meeson DTIC
SELECTE

OCT 11190

January 1989 B

Prepared for
STARS Joint Program Office

INSTITUTE FOR DEFENSE ANALYSES

1801 N. Beauregard Street, Alexandria, Virginia 22311-1772

2 IDA Log No. HCG 88-033376

0 ' 10 0,2 --

DEFINITIONS
IDA publishes the following documents to report the results of its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
panels composed of senior individuals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower In scope than those c-_tered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals or
formal Agency reports.

Documents

IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an Investigation, or (a) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use.

The work reported in this document was conducted under contract MDA 903 84 C 0031 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

This Paper has been reviewed by IDA to assure that it meets high standards of
thoroughness, objectivity, and appropriate analytical methodology and that the results,
conclusions and recommendations are properly supported by the material presented.

@ 1 M institute for Defes nalyses i

The Government of the United States Is granted an unlimited license to reproduce this 1
document. I

Approved for public release, unlimited distribution; 30 August 1990. Unclassified.

R DForm ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response. including the time for reviewing instructions. searching existing data sources, gathening and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information.
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for intormation Operations and Reports. 1215 Jefferson Davis Highway. Suite 1204. Arlington.
VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 1989 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Lexical Analyzer Generator User's Guide
MDA 903 84 C 0031

6. AUTHOR(S) A-134
Reginald N. Meeson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Defense Analyses REPORT NUMBER

1801 N. Beauregard St. IDA Paper P-2109
Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

STARS Joint Program Office
1400 Wilson Blvd.
Arlington, VA 22209-2308

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, unlimited distribution; 30 August 2A
1990.

13. ABSTRACT (Maximum 200 words)

IDA Paper P-2109, Ada Lexical Analyzer Generator User's Guide, documents how to use the Ada
Lexical Analyzer Generator program which will create a lexical analyzer or "next-token" procedure
for use in a compiler, pretty printer, or other language processing programs. Lexical analyzers are
produced from specifications of the patterns they must recognize. The notation for specifying
patterns is essentially the same as that used in the Ada Language Reference Manual. The generator
produces an Ada package that includes code to match the specified lexical patterns and returns the
symbols it recognizes. Familiarity with compiler terminology .- d techniques is assumed in the
technical sections of this document. Automated generation of lexical analyzers is illustrated by
developing a complete example.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada Programming Language; Software Engineering; Lexical Analysis; Lexical 50
Patterns. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASS'FICATION 20. UMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unc!arsfled Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298.102

IDA PAPER P-2 109

Ada LEXICAL ANALYZER GENERATOR
USER'S GUIDE

Reginald N. Meeson

January 1989

I DA
!NSTITT 'TF FOR PL-F~E',J I., XL', SES

Contract N4DA 903 84 C (003!
DARPA Assignment A- 134

PREFACE

The purpose of IDA Paper P-2109, Ada Lexical Analyzer Generator User's Guide, is to
document the use of the Ada Lexical Analyzer Generator, which was developed as part
of IDA's prototype software development work for the Software Technology for
Adaptable and Reliable Software (STARS) program under Task Order T-D-429. This
paper is directed toward potential users of the generator program. Automated
generation of lexical analyzers is illustrated by developing a complete example.

An earlier draft of this document was reviewed within the Computer and Software
Engineering Division (CSED) by B. Brykczynski, W. Easton, R. Knapper, J. Sensiba, L.
Veren, R. Waychoff, and R. Winner (April 1988).

Accession For

NTIS GRA&I

DTI'C TAB 51
Unannounced 5
Just ifi cat ion

By
Distrlbution/
Availability Codes

Avail and/or
IDtst I peeial

I I - I

CONTENTS

1. INTRODUCTION . 1
1.1 Scope . 1
1.2 Background 1

2. LEXICON DEFINITION 3
2.1 Lexical Pattern Notation
2.2 Declarations and Actions 4

3. PROGRAM INTERFACES 7
3.1 Input and Output Streams 7
3.2 Packaging Options 7
3.3 Generator Files 8

4. SAMPLE SPECIFICATION 9
4.1 Patterns 9
4.2 Actions10
4.3 Packaging 11

5. ADDITIONAL FEATURES13
5.1 Additional Alternatives 13
5.2 Look-Ahead and Ambiguity 13

6. REFERENCES 15

APPENDIX A - SAMPLE LEXICAL ANALYZER SPECIFICATION 17

APPENDIX B - SAMPLE GENERATED LEXICAL ANALYZER
CODE 21

APPENDIX C - SAMPLE LEXICAL ANALYZER TEST PROGRAM 31

APPENDIX D - SAMPLE LEXICAL ANALYZER TEST DATA 35

vii

1. INTRODUCTION

This document is a user's guide for the Ada Lexical Analyzer Generator. The
generator was developed as part of IDA's prototype software development work for
STARS (Software Technology for Adaptable and Reliable Systems). This report was
written in partial fulfillment of Section 4(d) of Task Order T-D5-429.

The Ada Lexical Analyzer Generator is a program that will create a lexical analyzer or
"next-token" procedure for use in a compiler, pretty printer, or other language processing
program. Lexical analyzers are produced from specifications of the patterns they must
recognize. The notation for specifying patterns is essentially the same as that used in the
Ada language reference manual [1]. The generator produces an Ada package that
includes code to match the specified lexical patterns and return the symbols it recognizes.
Familiarity with Ada programming techniques is assumed in the technical sections of this
report.

1.1 Scope

This report describes the notation used for specifying lexical patterns and "walks
through" the process of creating a lexicon and generating a simple lexical analyzer.

1.2 Background

Lexical analysis is the first stage of processing in a compiler or other language
processing program, and is where basic language elements such as identifiers, numbers,
and special symbols are separated from the sequence of characters submitted as input.
Lexical analysis does not include recognizing higher levels of source language structure
such as expressions or statements. This processing is performed by the next compiler
stage, the parser. Separating the lexical analysis stage from the parsing stage greatly
simplifies the parser's task. Lexical analyzers also simplify other language processing
tools that do not need full-scale parsers for their entire input language; for example,
pretty printers. In fact, lexical analysis techniques can simplify many other applications
that process complex input data.

For more information on compiler organization and implementation techniques, readers
may wish to consult a standard text on compiler development. (See, for example, the
"dragon" book [2].)

A lexical analyzer generator produces lexical analyzers automatically from specifications
of the lexical components of the input language. This is easier and more reliable than
coding lexical analyzers manually. One commercial lexical analyzer generator on the
market is the Unix"-based program "lex" [3]. The Ada lexical analyzer generator
differs from lex in at least three significant ways:

1

* The notation for describing lexical patterns is much easier to read and understand

" The generator produces directly executable code (lex-generated analyzers are table
driven)

" The generator produces Ada code

.. . .. • • II I | |2

2. LEXICON DEFINITION

This section presents the basic rules for creating specifications for lexical analyzers.
This includes defining the patterns to be matched, and the actions to be taken when
patterns are recognized.

Different type faces are used below to distinguish rules for writing lexical analyzer
specifications from examples of pattern definitions. This device is necessary because, by
design, the notation for patterns is almost identical to that for syntax rules.

" Rules for writing specifications are set in -- plain font

" Pattern definitions and sample code are set in - typewriter font

2.1 Lexical Pattern Notation

Lexical patterns are specified using a simple variant of Backus-Naur Form (BNF).
Definitions in this language follow the rule

pattern-definition ::=
pattern-name "::=" regular-expression

Pattern names are represented by Ada identifiers. The symbol "::=" is the pattern
definition operator. Regular expressions are made up of literal symbols and pattern
names using the combining forms described below. Pattern definitions are always
terminated with a semicolon.

Literal symbols are reprtsented by Ada character and string literals and by reserved
identifiers. For example,

Semicolon
Apostrophe
Assignment Symbol

Patterns can be concatenated by writing them consecutively, without an operator symbol,

as in

CharacterLiteral = Apostrophe Graphic-Character Apostrophe

Literal string values are equivalent to the concatenation of the corresponding literal
characters. For example, the string ":=" is the same as the concatenation of the two
characters ':' and '='.

Character ranges can be specified using Ada's double-dot notation. For example,

Digit ::= '0' .. '9' ;
LowerCaseLetter 'at .. z';

Upper_CaseLetter 'A' . . ;

3

A vertical bar is used to separate alternative patterns, as in

Letter ::= LowerCaseLetter I Upper_CaseLetter

Letter orDigit ::= Letter I Digit ;

Square brackets are used to enclose optional patterns. For example, numbers with
optional fraction and exponent parts can be specified by

DecimalLiteral ::= Integer ['.' Integer] [Exponent]

Braces are used to enclose a repeated pattern, as in the following expression for
identifiers. The enclosed pattern may be matched zero or more times. Exainples are

Identifier ::= Letter 7 '' Letter orDigit ;

Integer ::= Digit f [_ '1 Digit I ;

Options and repetitions are exercised whenever possible so that the longest possible
pattern is always matched.

Precedence of operations. Of the three infix pattern construction operations, range
construction has the highest precedence, so ranges are always constructed first. Only
character ranges can be constructed. Concatenation is next. Any literal, range, or
named pattern can be concatenated to another. Alternation has the lowest precedence
and is always performed last.

The notation does not include parentheses to override these precedence rules. The effect
can be achieved, however, by defining additional patterns. The pattern for identifiers is
an example of this. The sub-patterns Letter and Letter-orDigit force the alternations to
be formed before the concatenations.

S
Regular form. To allow simple, efficient code to be generated for lexical analyzers, the
input pattern definitions must have a simple structure. Specifically, they must form a
regular grammar so that code for an equivalent finite-state machine can be generated.
The pattern construction operations described above allow the definition of arbitrary
regular patterns. The lexical analyzer generator does not support recursive pattern
definitions.

Predefined patterns. The patterns ENDOFJNPUT, ENDOFLINE, and
UNRECOGNIZED are automatically defined and handled by the generated code.

2.2 Declarations and Actions

In addition to the specification of lexical patterns, the lexical analyzer generator
requires definitions of the actions to be taken when a pattern is recognized. These actions
may further require type, variable, and procedure declarations to be included in the 5
package that is created. Lexical analyzer specifications, therefore, follow the rule:

4

lexical-analyzer-specification
lexicon token-streamname is

[declarative-part]
patterns

{ pattern-definition }
actions

{ action-alternative }
end [token-stream-name] ...

"Lexicon" is a reserved word. The token stream name is the name of the token stream
package generated by the lexical analyzer. The declarative part allows the declaration of
any supporting constants, types, variables, functions, or procedures. These declarations
are copied into the generated package body.

"Patterns" is a reserved word. Pattern definitions have the form described above.

"Actions" is a reserved word. Action alternatives follow the same rule as Ada case
statement alternatives; that is,

action-alternative ::=
when choice {"J" choice} "=>" sequen,.e.of-statements

Action choices can be any defined pattern name or "others" for the last action
alternative. The generator turns the action alternatives into a case statement with the
name of the recognized pattern as the selector.

There are two principle actions a lexical analyzer performs, returning a token value and
skipping over uninteresting input. To return a token to the calling program, the action
statements must assign a value to the output parameter NEXT (see Section 3.1) and end
with a "return" statement. For example,

when Identifier =>

NEXT := MAKETOKEN(IDENT, CURRENTSYMBOL, CURLINENUM);

return;

To skip over a recognized pattern (for example, white space or cemments), specify "null"

as the action, with no return. For example,

when WhiteSpace => null;

The parameterless function CURRENT-SYMBOL returns the recognized string.
CURLINENUM is an integer variable that holds the current line number.

5

6

6

3. PROGRAM INTERFACES

This section describes the input and output interfaces for generated lexical analyzers
and the options available for incorporating generated code into application programs.

3.1 Input and Output Streams

The input character stream for the lexical analyzer is represented by a procedure
that produces consecutive characters on each call. The specification for this procedure is

procedure GETCHARACTER(EOS: out BOOLEAN;

NEXT: out CHARACTER;

MORE: in BOOLEAN := TRUE);

This mechanism allows input text to be produced from a file or from other sources within
a program.

The output stream produced by the lexical analyzer generator is a sequence of tokens.
The specification for the token stream package generated is

package TOKENSTREAMNAME is

procedure ADVANCE(EOS: out BOOLEAN;

NEXT: out TOKEN;

MORE: in BOOLEAN := TRUE);

end TOKENSTREAMNAME;

The package name is taken from the lexicon specification. The procedure ADVANCE
reads input by invoking the GET-CHARACTER procedure. It returns an end-of-stream
flag, EOS, which is TRUE when the end of the input is reached. When EOS is FALSE,
NEXT contains the next token value. TOKEN is a user-defined type. The optional
parameter MORE may be set to FALSE to indicate that no more tokens will be drawn
from the stream.

3.2 Packaging Options

There are three methods for combining generated stream packages with the
remainder of an application program:

" Copying the generated text into the program source file

* Making the generated package body a separate compilation unit

* Creating a generic package

7

Copying generated text is the least flexible method. If any of the lexical patterns are
changed, the old text must be extracted and replaced by the new using a text editor.
Creating a generic package requires passing the GETCHARACTER procedure and
TOKEN type, and possibly other information, as instantiation parameters. Making the
package body a separate compilation unit is the simplest method. Generics and separate
compilation are supported by the generator by allowing either a generic formal part or a
"separate" declaration to precede a lexical analyzer specification. A complete
description of the rule for specifications is

lexical-analyzer-specification
[context-clause]
[generic-formal-part I separate "(" parent-name ")" I
lexicon token-streamname is 0

[declarative-part]
patterns

{ pattern-definition }
actions

{ action-alternative }
end [token-stream-name] ";"

For generic lexical analyzers, a complete package definition (specification and body) with
the specified generic parameters is generated. The GET-CHARACTER procedure and
TOKEN type must be included in the list of generic parameters. For non-generic
analyzers, only the package body is generated. If a "separate" clause is supplied in the
lexicon specification, it is reproduced in the generated code. The parent unit must
include the package specification and an "is separate" declaration for the package body.

3.3 Generator Files

The generator reads lexical analyzer specifications from the STANDARDJNPUT
file and writes its output to the STANDARDOUTPUT file. These input and output
interfaces may be redirected to appropriate files using available operating system
commands. Error messages are written to a file called STANDARD-ERROR. The
generator reads one additional file called TABLE, which contains its translation tables.

8

4. SAMPLE SPECIFICATION

In this section a complete specification for a simple lexical analyzer is developed.
This analyzer will be required to recognize and return the components of arithmetic
expressions, skipping white space and comments. Specifically, the components to be
recognized are

9 Identifiers for variables and functions

* Integer and real decimal numbers

* Operator symbols ("+", "-", "*", and "/")

* Left and right parentheses

4.1 Patterns

Most of the pieces for the required patterns were introduced in Section 2, so it should
be fairly easy to create the "patterns" section of the specification. For identifiers and
numbers we have:

Identifier ::= Letter [['_'] Letter_or_Digit I

Letter 'A'..'Z' 'a'. .'z

Digit : 0'-19t

Letter orDigit ::= Letter I Digit

Integer Digit [[' '1 Digit I

DecimalLiteral ::= Integer U.' Integer] [Exponent]

The remaining patterns needed are:

Exponent 'E' ['+'1'-'] Integer

Operator Symbol : +*

LeftParenthesis /C

Right_Parenthesis ::= ')'

Comment ::= "--" [GraphicCharacter l ASCII.HT I

0 GraphicCharacter ::=' '. .'-'

WhiteSpace Separator (Separator I

9

Separator ' ' I ASCII.HT

Any other text that appears in the input, such as other special symbols, will be matched
by the UNRECOGNIZED pattern.

4.2 Actions

Actions must be specified for each of the patterns to be recognized. To simplify this
discussion, assume there exists a function called "MAKE-TOKEN" that creates a token
valuc from the information collected by the lexical analyzer. The requirements for this
function will be clear from its use. Assume also that there exists an enumerated type that
identifies the type of token returned. For this example we will use

type TOKENTYPE is
(IDENT, LF_PAREN, NOTMINE, NUMBER, OPERATOR, RTPAREN);

The actions that return tokens can then be specified by the following "when" clauses:

when Identifier =>

NEXT := MAKETOKEN(IDENT, CURRENTSYMBOL, CURLINENUM);

return;

when DecimalLiteral =>

NEXT := MAKETOKEN(NUMBER, CURRENTSYMBOL, CURLINENUM);

return;

when Operator Symbol =>

NEXT := MAKETOKEN(OPERATOR, CURRENT_SYMBOL, CURLINENUM);
return;

when LeftParenthesis =>

NEXT := MAKETOKEN(LFPAREN, CURRENT_SYMBOL, CURLINENUM);

return;

when RightParenthesis =>

NEXT := MAKETOKEN(RTPAREN, CURRENT_SYMBOL, CURLINENUM);

return;

For comments and white space the action is to skip over the input text and search for the
next pattern. This is achieved by the clause

when Comment I White-Space => null

Actions must also be specified for input that does not match any pattern. One option is to
skip over such input. This prevents the calling procedure from handling input errors
intelligently, however, because it never sees the errors. One solution is to return an
"unrecognized" token and let the calling procedure deal with the problem.

10

when others =>

NEXT := MAKETOKEN(NOT MINE, CURRENT_SYMBOL, CURLINENUM);

return;

This completes the list of required actions.

4.3 Packaging

For this example a lexical analyzer with a separately compiled package body will be
generated. This is accomplished by the following outline of the complete specification.

separate (SAMPLETESTPROGRAM

lexicon SAMPLETOKENSTREAM is

patterns

-- include all the pattern definitions here

actions

-- include all the action "when" clauses here

end SAMPLETOKENSTREAM ;

The lexical analyzer generator will produce a separately compilable package body for a
package named SAMPLE-STREAM. As described above, the calling procedure must
contain the specification for this package and the clause

package body SAMPLETOKENSTREAM is separate;

The typc TOKEN, the procedure GET-CHARACTER, and the function
MAKE-TOKEN, which was used to construct token values, must also be defined and
must be visible within the calling procedure or program.

Appendix A presents a complete listing of the specification for this sample lexical
analyzer. A pretty-printed listing of code produced by the generator is presented in
Appendix B. Appendix C presents a test program that prints the tokens it receives from
the analyzer. Appendix D shows sample input data and the output produced by this
program.

011

12

5. ADDITIONAL FEATURES

This section discusses some additional features of the lexical analyzer generator that
are not illustrated in the examples above.

5.1 Additional Alternatives

Alternatives for a pattern may be specified by creating multiple definitions for the
same pattern name. For example, if relational operations were required in addition to
the arithmetic operations in the lexical analyzer we created above, the following
definition could be added to the existing list of patterns.

Operator_Symbol :: "=" I ' ' I 1"<= 11 I I I f>1 I ">="

5.2 Look-Ahead and Ambiguity

Two different patterns may start with the same character or sequence of characters.
This requires lexical analyzers to "look" ahead into the input to determine which pattern
to match. This look-ahead processing can usually be handled completely automatically.

Patterns may also be ambiguous. That is, a given sequence of characters may match two
different patterns at the same time. Normal processing attempts to match the longer
pattern first and accept it if it matches. If the longer pattern fails to match, the analyzer
will fall back and match the shorter pattern.

To match the shorter of two ambiguous patterns, a special look-ahead operator is
provided. The classic example of this situation is the Fortran "DO" statement. The
following Fortran statements illustrate the problem:

DO 10 I = 1,10 and DO 10 I = 1.10

The first is the start of a loop structure, for which the keyword "DO" must be matched.
The second is an assignment statement, for which the identifier "DOIOI" must be
matched. Without special attention, the analyzer would match identifier "DO1OI" in both
cases. The pattern required to recognize the keyword "DO" is

KeywordDO ::= "DO" # Label Identifier '=' IndexExpr ','

The sharp symbol (#, not in quotes) separates this pattern into two parts. If the entire
pattern is matched the analyzer falls back to the # and returns the first part of the pattern
as the result. The string to the right is preserved as input to be scanned for the next
symbol, which in this example is the loop label. If the pattern fails to match, the lexical
analyzer falls back to the # and attempts to match the alternative pattern, which in this
example is an identifier.

13

14

6. REFERENCES

[1] Ada Programming Language, ANSI/MIL-STD-1815A, January 1983.
[2] Aho, A., R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools,

Addison-Wesley, 1985.
[3] Lesk, M., Lex -- A Lexical Analyzer Generator, Computing Science Technical

Report 39, AT&T Bell Laboratories, Murray Hill, NJ, 1975.

15

S

S

S

S

S

S

a

S

16 S

APPENDIX A - SAMPLE LEXICAL ANALYZER SPECIFICATION

This appendix contains a listing of the sample lexical analyzer specification discussed in
Section 4. This specification contains pattern definitions and action statements necessary to
construct a lexical analyzer that will recognize components of simple arithmetic expressions.

17

• I

separate (SAMPLETESTPROGRAM

lexicon SAMPLETOKENSTREAM is

patterns

Comment = GraphicCharacter I ASCII.HT I ;

DecimalLiteral Integer ['.' Integer] [Exponent]

Digit ::= '0' .. '9'

Exponent 'E' ['+' '-'] Integer ; •

Graphic_Character

Identifier ::= Letter [['] Letter or Digit

Integer ::= Digit (V' 'I Digit ;

LeftParenthesis ::=

Letter ::= 'A' 'Z' 'a' .. z'

Letter or Digit Letter I Digit

OperatorSymbol '+'I '* 'I'

Right Parenthesis

White-Space ' ' { ' " I;

actions

when Comment WhiteSpace => null;

when DecimalLiteral =>

NEXT := MAKETOKEN(NUMBER, CURRENT-SYMBOL, CURLINENUM);

return;

when Identifier =>

NEXT t= MAKETOKEN(IDENT, CURRENTSYMBOL, CURLINENUM);

return;

when LeftParenthesis =>

NEXT := MAKETOKEN(LF_PAREN, CURRENTSYMBOL, CUR LINENUM);

return;

when Operator Symbol =>

18

NEXT := MAKETOKEN(OPERATOR, CURRENT_SYMBOL, CURLINE NUM);

return;

when Right_Parenthesis =>
NEXT := MAKETOKEN(RT_PAREN, CURRENT_SYMBOL, CURLINENUM);

return;

when others =)
NEXT := MAKE TOKEN(NOTMINE, CURRENT_SYMBOL, CURLINENUM);

return;

end SAMPLETOKENSTREAM;

19

a

20a

APPENDIX B - SAMPLE GENERATED LEXICAL ANALYZER CODE

This appendix contains a pretty-printed listing of code generated for the sample
lexical analyzer discussed in Section 4. This package body includes pattern-matching
code for all specified lexical patterns and actions to be taken when patterns are
recognized. This code was generated automatically by the lexical analyzer generator
from the specification given in Appendix A.

21

separate (SAMPLETESTPROGRAM

package body SAMPLETOKENSTREAM is

BUFFERSIZE: constant := 100;

subtype BUFFERINDEX is INTEGER range 1..BUFFERSIZE;

type PATTERNID is

(Comment,DecimalLiteral,Digit,Exponent,Graphic_Character,

Identifier,Integer,Left Parenthesis,Letter,Letter or Digit,

OperatorSymbol ,RightParenthesis,WhiteSpace,
ENDOFINPUT, ENDOFLINE, UNRECOGNIZED);

9
CURLINENUM: NATURAL := 0;

CURPATTERN: PATTERNID := ENDOFLINE;

START OF LINE: BOOLEAN;

CHARBUFFER: STRING(BUFFERINDEX);

CURCHARNDX: BUFFERINDEX;
TOPCHARNDX: BUFFERINDEX;

procedure SCANPATTERN; -- forward

function CURRENTSYMBOL return STRING is

begin

return CHARBUFFER(1..(CUR_CHARNDX-1));

end;

procedure ADVANCE(EOS: out BOOLEAN;

NEXT: out TOKEN;

MORE: in BOOLEAN := TRUE) is

begin

EOS := FALSE;

loop

SCANPATTERN;
case CURPATTERN is
when ENDOFINPUT =>

EOS': = TRUE;

return;

when ENDOFLINE => null;

when Comment I WhiteSpace => null;

when Decimal Literal =>

NEXT := MAKETOKEN(NUMBER, CURRENTSYMBOL, CUR_LINE_NUM);

return;
when Identifier =)

NEXT := MAKETOKEN(IDENT, CURRENTSYMBOL, CURLINENUM);

return;
when LeftParenthesis =>

NEXT := MAKETOKEN(LFPAREN, CURRENTSYMBOL, CURLINENUM);

return;

22

when OperatorSymbol =>

NEXT := MAKETOKEN(OPERATOR, CURRENTSYMBOL, CURLINENUM);

return;

when Right_Parenthesis =>

NEXT := MAKETOKEN(RTPAREN, CURRENTSYMBOL, CURLINENUM);

return;

when others =>

NEXT := MAKETOKEN(NOT_MINE, CURRENTSYMBOL, CURLINENUM);

return;

end case;

end loop;

end ADVANCE;

procedure SCANPATTERN is

CURRENTCHAR: CHARACTER;

ENDOFINPUTSTREAM: BOOLEAN;

LOOKAHEADFAILED: BOOLEAN : FALSE;

FALLBACKNDX: BUFFERINDEX : 1;

LOOKAHEADNDX: BUFFERINDEX;

procedure CHARADVANCE is

begin

CURCHARNDX : CURCHARNDX+I;

FALLBACKNDX : CURCHARNDX;

if CURCHARNDX <= TOPCHARNDX then

CURRENTCHAR := CHARBUFFER(CURCHARNDX);

else

GETCHARACTER(ENDOFINPUTSTREAM,CURRENTCHAR);
if ENDOFINPUTSTREAM then

CURRENTCHAR := ASCII.etx;

end if;

CHARBUFFER(CURCHARNDX) := CURRENTCHAR;

TOPCHARNDX := CURCHARNDX;

end if;

end;

procedure LOOKAHEAD is

begin

CURCHARNDX := CURCHARNDX+l;

if CURCHAR NDX <= TOPCHARNDX then

CURRENTCHAR := CHARBUFFER(CURCHARNDX);

else

GETCHARACTER(ENDOFINPUTSTREAM,CURRENT_CHAR);

if END OF INPUTSTREAM then

CURRENTCHAR := ASCII.etx;

end if;

CHARBUFFER(CURCHAR NDX) := CURRENTCHAR;

23

TOPCHAR NDX := CURCHARNDX;

end if;

end;

begin

STARTOFLINE := CURPATTERN
= ENDOFLINE;

if STARTOFLINE then S

CURLINENUM CUR LINENUM+1;

TOPCHARNDX 1;

GETCHARACTER(END OFINPUTSTREAM,CHARBUFFER(l));

if ENDOFINPUTSTREAM then

CHARBUFFER(l) := ASCII.etx;

end if;

else

TOPCHARNDX := TOP CHAR_NDX-CURCHARNDX+l;

for N in 1..TOP_CIhARNDX loop

CHARBUFFER(N) := CHARBUFFER(N+CURCHARNDX-1);

end loop;

end if;

CURCHARNDX 1;

CURRENTCHAR CHARBUFFER(I);

case CURRENTCHAR is

when ASCII.etx =>

CURPATTERN := ENDOFINPUT;

when ASCII.If..ASCII.cr =>

CURPATTERN := ENDOFLINE;

when ')' =>

CHARADVANCE;

CURPATTERN RightParenthesis;

when '*'..'+' I '/, =>

CHARADVANCE;

CURPATTERN := OperatorSymbol;

when '-' =>

CHARADVANCE;

CURPATTERN := Operator_Symbol;

case CURRENTCHAR is

when '-' =>

CHARADVANCE;

CURPATTERN := Comment;

loop

case CURRENTCHAR is

when ASCII.HT =>

CHARADVANCE;

when ' '•.'' =>

CHARADVANCE;

when others => exit;

end case;

end loop;

when others => null;

24

0

end case;

* when '(' =>

CHARADVANCE;

CURPATTERN LeftParenthesis
when 'A'..'Z' J'a'..'z' =>

CHARADVANCE;

CURPATTERN := Identifier;

loop

case CURRENT CHAR is

when ' ' =>

LOOKAHEAD;

case CURRENTCHAR is

when 'A'..'Z' I /a'..'z' =>

CHARADVANCE;

when '0'..'9' =>

CHARADVANCE;

when others =>

CURCHARNDX := FALLBACKNDX;

LOOKAHEADFAILED := TRUE;

end case;

when 'A'..'Z' I 'a'..'z' =>

CHARADVANCE;

when '0'..'9' =>

CHARADVANCE;

when others => exit;

end case;

exit when LOOKAHEADFAILED;

end loop;

when '0'..'9' =>

CHARADVANCE;

CURPATTERN := DecimalLiteral;

case CURRENT CHAR is
when '.' I '0'..'9' I 'E' I ' ' >

loop

case CURRENTCHAR is

when '0'..'9' =>

CHARADVANCE;

when ' ' =>

LOOKAHEAD;

case CURRENT CHAR is
when '0'..'9' =)

CHAR_ADVANCE;

when others =>

CURCHARNDX := FALLBACKNDX;

LOOKAHEADFAILED := TRUE;

end case;

when others => exit;

end case;

exit when LOOKAHEADFAILED;

25

end loop;

if CURPATTERN /= UNRECOGNIZED then

case CURRENTCHAR is

when '.' =>

LOOKAHEAD;

case CURRENTCHAR is
when '0'..'9' =>

CHARADVANCE;

if not LOOKAHEADFAILED then

case CURRENTCHAR is

when '0'..'9' 1 'E' '' =>

loop

case CURRENTCHAR is

when '0'..'9' =>

CHARADVANCE;

when ' ' =>

LOOK_AHEAD;

case CURRENTCHAR is

when '0'..'9' => S
CHARADVANCE;

when others =>

CURCHARNDX := FALLBACKNDX;

LOOKAHEADFAILED := TRUE;

end case;

when others => exit;

end case;
exit when LOOKAHEADFAILED;

end loop;

if not LOOKAHEADFAILED then

case CURRENTCHAR is

when 'E' =>

LOOKAHEAD;

case CURRENTCHAR is
when '+' 1 '-' =>

LOOKAHEAD;
case CURRENTCHAR is

when '0'..'9' =>

CHARADVANCE;
if not LOOKAHEADFAILED then

loop

case CURRENT CHAR is
when '0'..'9' =>

CHARADVANCE;
when ' '=>

LOOKAHEAD;

case CURRENTCHAR is
when '0'..'9' =>

CHAR_ADVANCE;

when others =>

26

CURCHARNDX := FALLBACKNDX;

LOOK AHEADFAILED := TRUE;

end case;

when others => exit;

end case;

exit when LOOKAHEADFAILED;

end loop;

end if;

when others =>

CURCHARNDX := FALLBACKNDX;
LOOKAHEADFAILED := TRUE;

end case;

when '0'..'9' =>

CHARADVANCE;
if not LOOKAHEADFAILED then

loop

case CURRENTCHAR is

when '0'..'9' =>

CHARADVANCE;

when ' '=>

LOOKAHEAD;

case CURRENTCHAR is

when '0'..'9' =>

CHARADVANCE;

when others =>

CURCHARNDX := FALLBACKNDX;

LOOKAHEADFAILED := TRUE;

end case;
when others => exit;

end case;

exit when LOOKAHEADFAILED;

end loop;

end if;
when others =>

CURCHARNDX := FALLBACKNDX;

LOOKAHEADFAILED := TRUE;

end case;

when others => null;

end case;

end if;

when others =>

CURCHARNDX := FALLBACKNDX;

LOOKAHEADFAILED := TRUE;

end case;

end if;
when others =>

CURCHARNDX := FALLBACKNDX;

LOOKAHEADFAILED := TRUE;
end case;

27

when 'E' =>

LOOKAHEAD; 0
case CURRENTCHAR is

when '+' 1 '-' =>

LOOKAHEAD;

case CURRENTCHAR is
when '0'..'9' =>

CHARADVANCE;
if not LOOKAHEADFAILED then

loop

case CURRENTCHAR is

when '0'.,'9' =>

CHARADVANCE;
when ' '=>

LOOKAHEAD;
case CURRENTCHAR is

when '0'..'9' =>

CHARADVANCE;
when others => 0
CURCHARNDX := FALLBACKNDX;

LOOKAHEADFAILED TRUE;
end case;

when others => exit;

end case;

exit when LOOKAHEAD_FAILED;

end loop;

end if;

when others =>
CURCHARNDX := FALLBACKNDX;
LOOK AHEADFAILED -= TRUE; i

end case;
when '0'..' 9 ')

CHARADVANCE;

if not LOOKAHEADFAILED then
loop 0

case CURRENTCHAR is

when '0'..'9' =>
CHARADVANCE;

when ' '=>

LOOKAHEAD;

case CURRENTCHAR is 0
when '0'.-'9' =>

CHARADVANCE;

when others =>

CURCHARNDX := FALLBACKNDX;

LOOKAHEADFAILED := TRUE;

end case;

when others => exit;

end case;

28

exit when LOOKAHEADFAILED;

end loop;

end if;
when others =>

CURCHARNDX := FALLBACK_NDX;
LOOKAHEADFAILED := TRUE;

end case;
when others => null;

end case;

end if;

when others =>

CURPATTERN := UNRECOGNIZED;

end case;

when ' ' =>

CHARADVANCE;

CURPATTERN := WhiteSpace;

loop

case CURRENT CHAR is
* when '' =>

CHARADVANCE;
when others => exit;

end case;

end loop;

when others =>

CHARADVANCE;
CURPATTERN := UNRECOGNIZED;

end case;

end;

end SAMPLETOKENSTREAM;

29

300

APPENDIX C - SAMPLE LEXICAL ANALYZER TEST PROGRAM

This appendix contains a test program that calls the sample lexical analyzer
discussed in Section 4. This program simply reports the token information returned by
the analyzer. It includes definitions for the types TOKEN and TOKEN-TYPE, the
GET-CHARACTER procedure, and the MAKEITOKEN function required by the
analyzer. It also includes the analyzer package specification and the "is separate"
declaration for the analyzer package body produced by the generator.

31

with INTEGERTEXTIO, TEXT_IO;

procedure SAMPLETESTPROGRAM is

-- This procedure is a sample test program for exercising code

-- produced by the Lexical Analyzer Generator.

use INTEGERTEXT_10, TEXTIO;

type TOKENTYPE is

(IDENT, LFPAREN, NOTMINE, NUMBER, OPERATOR, RT_PAREN);

subtype SHORTSTRING is STRING(I..12);

type TOKEN is

record

KIND: TOKENTYPE;

PRINTVALUE: SHORTSTRING; •

LINENUMBER: INTEGER;

end record;

EOS: BOOLEAN;

TOK: TOKEN;

procedure GETCHARACTER(EOS: out BOOLEAN;

NEXT: out CHARACTER;

MORE: in BOOLEAN != TRUE) is 0
-- Produce input characters for the lexical analyzer.

begin

if ENDOFFILE(STANDARDINPUT) then

EOS := TRUE;

elsif END OFLINE(STANDARDINPUT) then

SKIPLINE(STANDARDINPUT);

EOS : FALSE;

NEXT : ASCII.CR;

else

EOS : FALSE;

GET(STANDARDINPUT,NEXT); 0
end if;

end;

function MAKETOKEN(KIND: TOKENTYPE; SYMBOL: STRING; LINENUMBER: NATURAL)
return TOKEN is

-- construct a token value from input lexical information

32

function CVTSTRING(STR: in STRING) return SHORTSTRING is

-- Convert an arbitrary-length string to a fixed length string.

RESULT: SHORTSTRING;

begin

for I In SHORTSTRING'RANGE loop

if I <= STR'LAST then

RESULT(I) := STR(I);

else

RESULT(I) := '

end if;

end loop;

return RESULT;

end;

begin
return TOKEN'(KIND, CVTSTRING(SYMBOL), LINENUMBER);

end;

package SAMPLETOKENSTREAM is

procedure ADVANCE(EOS: out BOOLEAN;

NEXT: out TOKEN;

MORE: in BOOLEAN := TRUE);

end SAMPLETOKENSTREAM;

package body SAMPLETOKENSTREAM is separate;

begin

loop

SAMPLETOKENSTREAM.ADVANCE(EOS,TOK);

exit when EOS;

PUT(TOK.PRINTVALUE);

PUT(" ");

PUT(TOK.LINENUMBER);

PUT(" ");

* case TOK.KIND is

when IDENT => PUT("Identifier");

when LFPAREN => PUT("Left Parenthesis");

when NOTMINE => PUT("Unrecognized");

when NUMBER => PUT("Number");

when OPERATOR => PUT("Operator");

when.RTPAREN => PUT("Right Parenthesis");

end case;

NEWLINE;

33

end loop;

end SAMPLETESTPROGRAM;

340

APPENDIX D - SAMPLE LEXICAL ANALYZER TEST DATA

INPUT:

+ - * / -- the operators

123 45.67 89EI0 -- numbers

ABC ijk XYZ -- identifiers

-- This is a comment

- A blank line

ABC + (123 - xyz) * 0.456 -- one expression

123.456E78 / -123.456E-78 -- another

1.0 - sin(theta) -- and another

OUTPUT:

+ 1 Operator

1 Operator
* 1 Operator

*/ 1 Operator

123 2 Number

45.67 2 Number

89E10 2 Number

ABC 3 Identifier

ijk 3 Identifier

XYZ 3 Identifier

ABC 7 Identifier

7 Operator

7 Left Parenthesis

123 7 Number
- 7 Operator

xyz 7 Identifier

7 Right Parenthesis
* 7 Operator

0.456 7 Number

123.456E78 8 Number
/ 8 Operator

8 Operator

123.456E-78 2 Number

1.0 9 Number
- 9 Operator

sin 9 Identifier

9 Left Parenthesis

theta 9 Identifier

9 Right Parenthesis

35

36

Distribution List for IDA Paper P-2109

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Dr. John F. Kramer 1
Program Manager
STARS
DARPA/ISTO
1400 Wilson Blvd.
Arlington, VA 22209-2308

Other

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

IDA

General W.Y. Smith, HQ 1
Ms. Ruth L. Greenstein, HQ 1
Mr. Philip L. Major, HQ 1
Dr. Robert E. Roberts, HQ I
Dr. Richard J. Ivanetich, CSED 1
Ms. Katydean Price, CSED 1
Dr. Reginald N. Meeson, CSED 1
IDA Control & Distribution Vault 2

Distribution List-1

